A numerical study on large-scale nonlinear solvers
نویسندگان
چکیده
منابع مشابه
Robust Large-scale Parallel Nonlinear Solvers for Simulations
This report documents research to develop robust and efficient solution techniques for solving large-scale systems of nonlinear equations. The most widely used method for solving systems of nonlinear equations is Newton’s method. While much research has been devoted to augmenting Newton-based solvers (usually with globalization techniques), little has been devoted to exploring the application o...
متن کاملNumerical solution of nonlinear SPDEs using a multi-scale method
In this paper we establish a new numerical method for solving a class of stochastic partial differential equations (SPDEs) based on B-splines wavelets. The method combines implicit collocation with the multi-scale method. Using the multi-scale method, SPDEs can be solved on a given subdomain with more accuracy and lower computational cost than the rest of the domain. The stability and c...
متن کاملA Variable Structure Observer Based Control Design for a Class of Large scale MIMO Nonlinear Systems
This paper fully discusses how to design an observer based decentralized fuzzy adaptive controller for a class of large scale multivariable non-canonical nonlinear systems with unknown functions of subsystems’ states. On-line tuning mechanisms to adjust both the parameters of the direct adaptive controller and observer that guarantee the ultimately boundedness of both the tracking error and tha...
متن کاملFlexible complementarity solvers for large-scale applications
Discretizations of infinite-dimensional variational inequalities lead to linear and nonlinear complementarity problems with many degrees of freedom. To solve these problems in a parallel computing environment, we propose two active-set methods that solve only one linear system of equations per iteration. The linear solver, preconditioner, and matrix structures can be chosen by the user for a pa...
متن کاملA Three-terms Conjugate Gradient Algorithm for Solving Large-Scale Systems of Nonlinear Equations
Nonlinear conjugate gradient method is well known in solving large-scale unconstrained optimization problems due to it’s low storage requirement and simple to implement. Research activities on it’s application to handle higher dimensional systems of nonlinear equations are just beginning. This paper presents a Threeterm Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1996
ISSN: 0898-1221
DOI: 10.1016/0898-1221(96)00109-5